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Abstract—This paperdescribesgwo algorithmsfor accu-
rately locating a sphericalobjectin spaceusing datacol-
lectedfrom a scanningaserrangefinder. Thiswork is de-
signedto supportthe capturephaseof a future rendezous
and samplereturn missionto Mars. The first algorithm
finds the parameter®f the spherewhich optimally fit the
set of data points. This methodis showvn to be quite
slow, and unlikely to meetthe accurag requirementsof
the mission. The secondalgorithmmakesa setof almost-
independenestimatef the position of the centerof the
sphere,onefrom eachscanline of data. Theseestimates
arecombinedusingregressiorto producean aggreatees-
timateof thesphergoosition. This secondalgorithmis both
fastenoughandaccurateenoughto meetmissionrequire-
ments.
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1. INTRODUCTION

A futurerendezwusandsamplereturn(RSR)missionwill

attemptto returnrock andsoil samplegrom Marsto Earth.
The currentmissionscenariorequiresretrieval of a 16 cm
diametersphericalorbital samplecaniste{(OS) from Mars
orbit. In the terminalapproachphaseof this dockingma-
neuver the principal sensomsedto determinghedirection
anddistanceo theOSwill beascannindaserrangefinder.

The terminal approachphasecovers a rangeof distances
from 5 km to 1 meter During this interval, the laserrange
finderis requiredto returnindependenpositionestimates
at one-halfsecondintervals. Theseestimateswill be fil-
teredby guidanceandcontrolsoftwareto provide a contin-
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uous,highly accurateestimateof the positionof the OS.

Thelaserrangefinderrequiresalgorithmsto accuratelyde-

termine the 3 degree of freedom (DOF) position of the

OS throughoutthe terminal approachphase. This docu-
mentdescribeswo algorithmsusefulin thefinal 20 meters,
andanalyzegheir performancen simulation.Therequire-
mentsarefor accurag of 8 mm standarddeviationin each
of the X, Y, andZ directions.The algorithmmustalsorun

on a 12.5 MHz processarproducinga position estimate
every one-halfsecond.

Thefirst algorithmdetermineghe OS position by finding

the moving spherewhich bestfits the data. We call this

algorithm SphereFitting. This algorithmis ableto meet
the accurag requirementsnuchof the time, but produces
high errorin someconditions. Thoughit may be possible
to modify the algorithmto producemoreaccurateresults,
thealgorithmalsosuffersfrom beingquite slow. Werethis

algorithmchosenfurtherwork would berequiredto speed
up the algorithmto allow it to runin realtime ona 12.5

MHz processar

The secondalgorithmdetermineghe OS positionby gen-
eratinga 3 DOF positionestimatefrom eachscanline. We
call this algorithm ScanLine Extent. This algorithmis
more accuratethan SphereFitting, and also much faster
Thereshouldbe no problemrunningthis algorithmin real
time.

In the next section,we describethe two algorithms. Sec-
tion 3 lists the assumptionsiponwhich our evaluationof
the algorithmsare based. Section4 describeshe simu-
lation methodologyusedto evaluatethe performanceof
the two algorithms. Section5 reportsthe expectedperfor
mancecharacteristicof the two algorithmsbasedon the
simulationresults.Section6 lists our conclusions.

2. DESCRIPTION OF ALGORITHMS

Two algorithmsfor determiningthe positionof the OS at
closerangehave beendevelopedandevaluated.Theseare
the SphereFitting algorithmandthe ScanLine Extental-
gorithm. In this sectionwe describezachof these.

Sphee Fitting

The spherefitting algorithm is basedon a methodcom-
monly usedfor fitting circlesin 2D images.We extended



the algorithmto work in 3 spatialdimensionsandalsoto
handlea moving sphere.

Generally the pixels in an image are assumedo be ac-
quiredduringthe sameinstantin time. This is not true for
the “pixels” in the rangeimagefrom a laserrangefinder.
In our application,the “pixels; or more accuratelymea-
surementsareacquiredover the courseof % second.Dur-
ing this time, the targetis expectedto move. Eachmea-
surementontainsthe sphericalcoordinategangle,angle,
range)to a pointin spaceandthetime at which the mea-

surementvasacquired.

First we corvertthe sphericalcoordinatego Cartesiarco-
ordinates. The foreground measurementsn the OS are
easily distinguishablefrom the distantbackgroundmea-
surementsuy thresholding. In this algorithm, we ignore
all the backgroundpoints. This givesus a setof k points
eachof theform (z;,y;, 2;,t;). Thet; in eachpointis the
time stamp.

One commoncircle fitting algorithm (see[1]), minimizes
thefollowing costfunctionC to find optimalvaluesfor the
center(X,Y") andradiusR of thecircle.

k
CxY,R) =Y [V
- &

Here, /(z; — X)2 + (y; — Y)? is the distancefrom the
measurementz;,y;) to the putative centerof the circle
(X,Y). Whenthe costfunctionis minimized (i.e. when
X, Y, and R are“correct”), this distanceshouldbe very
closeto theradiusof thecircle R.
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To reducethe numberof squareroots, andthusspeedthe
computationof the cost function, the following function
may be minimizedinstead.
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In our casethevalueof R is aknown constant8¢m. This
simplifies the problema bit. However, this simplicity is
offsetby the compleity addedby thethird dimensionand
the factthat the sphereis moving. The conceptof a con-
stantcenter( X, Y, Z) of thespherds nolongervalid. Now
the constantcenteris replacedby a functionof time, asin
equations3 through5.

X(t) = Xo + Xt 3)
Y(t) =Yy + Yt 4)
Z(t) = Zo+ Zt (5)

Here, (X, Yo, Zo) representshe positionof the centerof
the OSattime 0; (X,Y, Z) representshe velocity of the

OS.Thevelocityis assumeatonstanthroughouthe% sec-
ondmeasuremerinterval. This assumptioris discussedn
section3. The positionof the centerof thesphereattime ¢
is thengivenby (X (), Y (t), Z(t)).

Usingthe notationof equations3 through5, the costfunc-
tion we have chosento minimize in the SphereFitting al-
gorithmis givenin equation6.
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Minimization is accomplishedby performing conjugate
gradientdescent,as in [2]. This is an iterative pro-

cedurewhich usesboth cost function evaluations, and

evaluationsof the derivative to find a set of parameters
(Xo, Yo, Zo, X, Y, Z) which producea locally minimum

cost.

ScanLine Extent

The SphereFitting algorithmignoresthe chronologicalor-

derin which measurementare collected.Not sowith the
ScarnlLine Extentalgorithm. Thisalgorithmrecognizeshat
therasterscanpatternusedby the laserrangerdevice may
bebrokenupinto scanlines. Withoutlossof generalitywe
assumehe horizontalscanis fasterthanthe vertical scan,
sothatazimuthpositionchangewery quickly comparedo

elevation.

Eachscanline which encounterghe OS producesan ap-
proximatelylinear setof measurementacrossthe faceof
the sphere Thoughthe OSmay move a significantamount

in = secondlhe movementof the OSin the -1 106 h second
reqwredto collect a scanline is expectedto be no more
thanamillimeter. Sincethisis smallerthantheaccurag of
the measurementsye treatall pointsin the scanline asif
they werecollectedat the sameinstantof time.

At neardistancesthe two angularcomponentof a col-
lected point provide much more accuratemeasurements
than doesthe rangecomponent. This algorithm attempts
to leveragethe angularcomponentgo improve accurag.
Consecutie measurementare very closetogetherin az-
imuth. Thefirst andlastmeasurementsf a scanline which
encounterthe OS give very accurateestimatesof the az-
imuth of theedgesof the OS.

This edgeazimuthinformationis usedin two ways. First,

the averageof the two azimuthsgives an estimateof the

azimuthof the centerof the OS at the time at which the

scanline was collected. Second,the differencebetween
thetwo edgeazimuthstells the angularextentof the OS.

The angularextentis usedin two ways. First, the angular
extentis usedto combinethe rangecomponentsf all scan



line measurementsto anaccurateestimatenf thedistance
to the centerof the OS. Second,oncethe distanceto the

centerof the OSis known, the angularextentmay be used
to producean estimateof the elevationdifferencebetween
thescanline andthe OScenter

In this way, eachscanline which encounterghe OS pro-
ducesan estimateof the coordinatesof the centerof the
sphericalOS at the time at which the scanline was col-
lected. Regressionis usedto producea combinedesti-
mateof (X;,Y;, Z:), the positionof the OS at time ¢, and
(X,Y, Z), thevelocity of the OS duringthe measurement
interval. A moredetaileddescriptionof this algorithmmay
befoundin appendixA.

3. ASSUMPTIONS

The developmentof the two algorithms,andthe method-
ology usedto testthemarebasedon a numberof assump-
tions. Thesearediscussedn thefollowing sections.

Motionis Linear

Both algorithmsassumehattherelative velocity of theOS
is constantwith respectto the sensorduring ary % sec-
ondtime interval in which a setof measurements taken.
Thereare a numberof ways in which this assumptions
actuallyfalse.

First, the assumptionis false becauseaccordingto our
requirementsthe sensormay be rotating at a rate of 6
mrad/secaroundeachof the threeaxes. Our analysis,in
section3, suggestshatthis inducesa negligible departure
from linearity during any measuremertime interval, and
thereforewill haveinsignificantinfluenceonalgorithmper
formance.

Secondtheassumptioris falsedueto theinfluenceof grav-
ity gradientaccelerationsHowever, over the courseof the
one-halfsecondinterval, this influenceis expectedto be
insignificantaswell.

Third, theassumptioris falseduringary measuremerih-
tenal in which anaccelerations appliedto the spacecratft.
Presumablythe spacecraftontrol software knows when
accelerationsreapplied,andcanignorethe suspecinea-
surementsakenduringthesemaneuers.

Magnitudeof Linear Motion

In this section, we presentanalysisto supportour con-
tentionthatspacecraftotationgproduceonly negligible de-
parturesfrom linear motions. We also calculatethe mag-
nitude of the apparentinear motion of the OS at various
distancesn therendezwusscenario.

Accordingto our requirementsghemaximumexpectedel-
ative velocity betweenthe spacecrafiand the OSis 1.5
cm/secin the x andy directions,and 3 cm/secin z. Ad-

Figurel. Aligning referencdramewith scanline

ditionally, a maximumof 6 mrad/seaotationis expected
aroundeachspacecrafexis. The laserrangeris pointing
up the z axis, andwe assumat is mountedl meteraway
from the spacecraftenterof massalongthe x-axis.

First, let uslook athow closeto linearthe apparenmotion
of the OSwill beundertheseconstraints All the motions
arelinear exceptfor the spacecraftotations. We demon-
stratethattheserotationsinducevery nearlylinearrelative
motionsusingfigure 1. In this figurethelaserrangeris po-
sitionedattheorigin, andthecurve representthe apparent
motion of the OS relative to the sensorduring a % second
interval dueto rotationof the sensoraboutthe x-axis. Dur-
ing this period of time the angularchangeis 3 mrad. In
orderto illustratethe configurationthe angleshovn in the
figure is muchlargerthanthis. The distanceto the OSis
givenby d. We wantto know the relationshipbetween,
half the arc chord,and s the largestoffset from the arcto
thearcchord. If A is large comparedo s, thenthe appar
entmotionis very closeto linear Thefollowing equations
calculatethe proportion%.

h = dsin1.5mrad (7
s =d—dcosl.5mrad (8)

2 25sin 0.001
h sin 0.0015 — 2667 ©)

s 1= cos 0.0015

The divergencefrom linearity is only 1 partin 2667 indi-

catingthatthe motionis very nearlylinear. This resultis

independenbf the distanceto the OS, andis the samere-

gardlesof theaxisof rotation. At adistanceof 20 meters,
s = 2.3 x 107° metersrepresentshe error in rangein-

troducedby the assumptiorof linearity. This is far belon

therequiredlevel of noise. Analysisof rotationsaboutthe
othertwo axesalsoyield extremelysmallerrors.

Next, we calculatethe magnitudeof the linear motions
in eachof threedimensionsunderworst-caseconditions.
Thesecalculationswill beusedin the simulationsreported
in sectionst and5.

First, we look attheworstcasemotion persecondn the z-
dimension.Therearetwo contributorsto achangen z: the
3.0cm/sedranslationin thez direction,andthe 6 mrad/sec



Dist. Rot. aboutY, X | Rot.aboutZ | X,Y Translation| TotalX | TotalY

(meters) (cm/sec) (cm/sec) (cm/sec) (cm/sec)| (cm/sec)
1 0.6 0.6 15 2.7 2.7

2 1.2 0.6 1.5 4.1 4.1

5 3.0 0.6 1.5 5.1 5.1

10 6.0 0.6 15 8.1 8.1

15 9.0 0.6 1.5 11.1 11.1

20 12.0 0.6 15 14.1 14.1

Table 1. Maximumlinearmotionin x andy

rotation aboutthe y-axis. Rotationsaboutthe x- and z-
axesproducenochangen thedistanceo theOS.However,
sincethelaseris mountedl meteraway from the centerof
massalongthe x-axis, a rotationaboutthe y-axiswill tend
to move the sensomearerto or fartherfrom the target—
a changein z. The magnitudeof this changedueto a 6
mrad/seaotationaboutthe y-axisis 0.6 cm/sec.Note that
thismotionis independentf thedistancdo thetarget,asis
the3.0cm/sedranslationin thez direction. The maximum
linear motionin the z-dimensionis the sumof thesetwo,
3.6cm/sec.

For the x- andy-dimensionsthe magnitudeof the linear
motion changeswith distanceto the OS for someof the
rotations. Therefore,we presenttable 1, which tatulates
the maximum/linear motion in the x andy directionsat
varioustargetdistances.

Thefirstcolumngivesthedistanceo theOS.Columnstwo,
three,andfour list the contributionsfrom varioussources
of motion- rotationsandtranslations.Theseare summed
to producethe maximum/linear motion in the x- andy-
dimensionslistedin thelasttwo columns..

Note that the calculationsfor x andy are symmetrical.
A rotationaboutx contributesthe samechangein the y-

dimensionasa rotationabouty contributesto x. Themag-
nitudeof thesechangesrelistedin columntwo. A rotation
aboutz contributesthesameto eachof x andy. This contri-

butionis constantwith respecto thedistanceto thetamget,
andis basedon the offset of the sensorfrom the centerof

mass(1 meter).This contribution dueto arotationaboutz

is givenin columnthree.Finally, the1.5cm/sedranslation
alongtheaxisof interest(x or y) is listedin columnfour.

Thesemaximumlinear motion calculationsareusedto es-
tablishthe amountof motion to be appliedin the simula-
tionsreportedn sections4 and5.

Entire OSis Wthin Field of Regard

Both algorithmsassumethat the entire OS is within the
field of regardduringthe measuremerinterval. The con-
sequencesf this assumptiorbeing falseare differentfor
thetwo algorithms.

Theimpactof failure of this assumptioron the ScanLine

Extentalgorithmarepotentiallyquitesevere.Any scanline

in which eitheredgeof the OS cannotbe foundis rejected
by the algorithm,andis thereforeuselessIf the OSinter

sectgheleft or right edgesof thefield of regardmary scan
lineswill berejected.If the left or right edgebisectsthe
sphereall scanlineswill be rejected. Theimpacton the
accurag of thealgorithmwill becatastrophic.

An intersectionof the OS with the top or bottom of the
field of regardhasafarlessdeleteriouseffect. In this case,
mary scanlineswill be presered,andthe impactwill be
smaller The resultsreportedin section5 at a distanceof
1 meterdemonstratehis case.At 1 meter the OSfills the
entire10 by 10 degreefield of regard. The laserrangerre-
quiresa full secondo scanan areathis large, so only half
of the OS can be scannedwithin the 1 secondmeasure-
mentinterval. Eventhoughonly half of the OSis being
scannedgenoughgoodscanlinesareproducedo generate
anacceptabhaccuratesstimationof the OS position.

We expectthe impactof violation of this assumptioron
the SphereFitting algorithmto be lessseverethanon the
ScanLine Extentalgorithm. The SphereFitting algorithm
treatseachmeasuremenidentically.  Although the algo-
rithm attributesno specialstatusto pointsnearthe edgeof
the sphere thesepointsare moreinformative for determi-
nation of the X andY componentf the centerposition
estimate We thereforeexpectsomedegradationof perfor
mancef edgepointsarelost.

The evaluationof the algorithmsin section5 arebasedon
the assumptiorthatthe OSin its entiretyis visible within
thefield of regard. Very little studyhasbeendoneon how
the two algorithmsdegradewhenthis assumptions vio-
lated. However, significantdegradationin accurag should
be expectedf thisassumptions violated.

LaserRadarCharacteristics

We assumethe laserradarusedto acquirerangeimages
is capableof generatingoulsesat 10000MHz. We assume
thescarratein thex-dimensioris 1000degreepersecond,
and10 degreespersecondn they-dimension.We assume
the rangemeasurementseturnedby the laserrangerare

accuratgo o = 2.0 cm. We assumehe x, andy encoders



Elevation (Degr ees)
o
N

0.2 -0.0
Azimuth (Degr ees)

Figure2. Scanline at 10 meterswith noiseadded.

arecapableof reportingthescanneangleto anaccuray of
o = 0.78 mrad.

4. SIMULATION METHODOLOGY

In orderto producethe error estimategpresentedn sec-
tion 5, we built a simple simulatorto producerangedata.
The simulatorgenerates rasterscanpatternand collects
rangedo a simulatedmoving sphere We do not attemptto
faithfully reproducethe interactionbetweenthe Gaussian
beamandthe surfaceof the sphere. Rather a ray is cast
in the currentscannerdirection,andthe rangeis reported
asthedistancerom theray origin to its intersectiorto the
sphere. This rangedatais usedasinput to the two algo-
rithms.

The scanpatterngenerateds a perfectrasterscanpattern
usingthe scanratesandpulserateasreportedn section3.
The scanratesare of constantvelocity with instantaneous
accelerationst the endsof scanlines and at the top and
bottom of frames. The pulserateis alsoconstantwith no
addednoise.

After the ray intersectionis calculated,we add random
Gaussiamoiseto eachcomponenibf the simulatedposi-
tion measurementThe magnitudeof noiseaddedto each
of azimuth,elevation,andrangeis asspecifiedn section3.
Figure2 shavstheazimuthandelevationof the pointsin a
scanline acrosghe centerof the sphereat a distanceof 10
meters.

The simulatorassumeshatthe velocity of the sphererel-

ative to the sensoiis constanthroughoutthe scanningpe-
riod. Thevelocity simulateds thatgivengivenin section3.

Note that the relative spherevelocity usedin a particular
simulationis basednthemeandistanceo thesphere See
tablel.

In orderto estimatethe noiseon the position estimatef
eachalgorithm,we run 200trials at eachof 6 differentdis-
tances.During eachtrial, the algorithmreceies  second
of data,taken asthe spheremovesup, to the right (from
the pointof view of thesensorandtowardthe sensorThe
starting position of eachtrial is chosenso that the center
of the spherewill move throughthe point (0, 0, Z) attime
0.25secondswhereZ is the distancefor the currenttrial.
Each} secondscanstartsattheupperleft handcornerand

Dist. | 3 AngleExtent| Frames
(meters) (degrees) PerTrial
1 5.22 0.48
2 2.65 0.95
5 1.12 2.23
10 0.60 4,14
15 0.43 5.77
20 0.35 7.20
Table 2. FrameSizeandNumberof Framesat Different
Distances

startsscanningight anddown.

The angularextent of eachscanis chosento be 105% of
thatrequiredo view thecompletesphereatall timesduring
the measuremerihterval. The sizeof the frameincreases
asthe distanceto the sphereis reduced. The numberof
frameswhich canbecompletedn 1 secondhennecessar
ily mustdecreaseTable2 givesthecalculatedchalf angular
extent,andthe numberof framesat eachof 6 differentdis-
tances.Notethatat 1 and2 metersJessthana full frame
is collected.Also, notethatat 1 meter the half angularex-
tentexceedss degreesthebaselinefor the currentscanner
design.

5. SIMULATION PERFORMANCE

The simulationtechniquedescribedn section4 allows us
to evaluatethe performanceof the algorithms. For each%
secondof rangedata,eachalgorithmproducesanestimate
of the positionof the spherehalf-way throughthetime in-
terval, andits velocity throughoutthe interval. Eachsuch
estimatemay be comparedo the true simulationposition
andvelocity in orderto ascertairthe accurayg of the two
algorithms.

For eachalgorithm,andfor eachof six differentdistances,
we gathered®200suchpositionandvelocity estimateseach
basednai seconcf datawith independenaddechoise.
This allows us to estimate for eachof the x-, y-, and z-

dimensionsthebiasof thealgorithm,andthenoisearound

thebias.

The bias s is merelythe meanof the differencesetween
the estimatesandthetruth asgivenin equationl0.

1 n
= EZ(HH — ;)

i=1

(10)

The noiseo is the squareroot of the varianceof the esti-
matesaboutthetruth asdenotedn equationll.

(11)

In thesetwo equationsg; is the algorithm’s estimate(e.qg.



of the x-positionof the sphere)for theith setof data,and
x; is thetruth for thatdataset.

If the bias can be characterizedaccurately it can often
be removed by simply subtractingthe biasfrom the algo-
rithm’sestimate For thisreasonthenoiseis generallycon-
sideredto bethe moreimportantof thetwo measures.

Sphee Fitting Algorithm

Figure 3 plotsthe positionerror of the spherefitting algo-
rithm. This graphshaws that both the biasandthe noise
of the x-coordinatearewell within requirementstall dis-
tances.However, the z-coordinatehasproblemsat all dis-
tanceswhile the y-coordinateis within specificationsex-
ceptatadistanceof onemeter

This patternshownn in the biasgraphsuggestshatthe best
fitting spherecenterfound by the algorithm tendsto be
pulledin the direction of the highestdensityof measured
points. Also, the noisegraphshaws thattheretendsto be
morenoisealongthedirectionin whichthecenteiis pulled.

Thisis notaproblemin thex-dimension.Becaus¢hescan-
ning patternis fastin thex-dimensionthedensityof points
is aboutequalon eithersideof thetrue spherecenteralong
the x-dimension. For this reason thereis little bias, and
little noisealongthex-dimension.

At most distancesthereis little biasor noisein the y-
dimensionbecausehereareaboutasmary measurements
to the top of the sphereasto the bottom. At shortdis-
tanceswe nolongerareableto gatheracompleteframein
the measuremerinterval. The biasof the algorithmthen
shavs up asatendeng to move thecenterup or down, to-
wardswhicheversideof thespheravasscannedThenoise
alsoincreasedn the samedimensiomasthebias.

The z-dimensionhasa problemat all distancesbecause
measurementare only madeto the closer face of the
sphere. Along the z-dimensionthereis always a higher
densityof pointson theclosesideof the spherecenterthan
onthefarside.Thealgorithmis thushiasedowardsreport-
ing thespheraasbeingcloserthanit actuallyis. In addition,
thereis consistentlyhigh noisealongthis dimension.

Table 3 showvs the maximum and minimum CPU times
amongthe 200 trials at eachdistance. Note that thereis
quite a variation betweenthe fastestand slovesttimes at
eachdistance.Thisis becausehefitting algorithmusedis
aniterative algorithmthatfinishesonly whentherequired
level of accuray is attained.

INote thatthis implies that the truth may changewith the dataset. In
fact, thetrajectoryof the spheres identicalin all n = 200 trials. How-
ever, in orderto reducenoise,thealgorithmis allowed to choosethetime
atwhich it will reportthe position. Thevalueof z; usedin equationslO
and1lis thetruth atthetime usedfor z; by thealgorithm.

Dist. Min Time | Max Time
(meters)| (seconds)| (seconds)
1 0.08 0.87
2 0.11 0.28
5 0.09 0.18
10 0.08 0.20
15 0.04 0.13
20 0.06 0.12
Table 3. CPUtimesfor singletrials of SphereFitting
Algorithm

Timingsweredoneona200MHz PentiumPro. Oneof our
requirementss thatthe algorithmmustrunin 0.5 seconds
onal2.5MHz processarlf we multiply eachof thenum-
bersin table3 by 16 to approximatehe speecdof thealgo-
rithm on the slower processarwe seethateventhe fastest
runsreportedn thetablewould not completein the requi-
sitetime.

Our analysisof this algorithmindicatesthatit is too slow,
it is too noisy, and hasa numberof biases.Sincethe bias
problemsare so easily characterizedit shouldnot be too
difficult to solve them. Likewise, we may find ways to
speedup the algorithm, either by optimizing the code,or
by startingtheiterationprocesswith betterinitial estimates
of the true centerposition. It may even be possibleto re-
ducethe noise.However, we have not attemptedo do ary
of thesethingsbecauseave have found the performanceof
the ScanLine Extentalgorithmto befar superior

ScanLine ExtentAlgorithm

Figure4 shaws the positionerror of the ScanLine Extent
algorithmat variousdistancesOnceagain theseerrorsare
collectedfrom 200 trials at eachdistance.First, notethat
thescaleof thesegraphsis muchdifferentthanfor thoseof
figure 3. All of the noisevaluesreportedhereareunder8
mm, andthereforemeetour requirement.

The noiseon the x componenis smallest. This is to be
expected,sincein this algorithmthe x componenis mea-
suredmoredirectly thanthe othertwo componentsBoth
they andz componentslependheasily on measurements
madein the x-dimension,and thereforeary noisein the
x-dimensionwould likely bereflectedn y andz aswell.

The increasein noise (and also in bias) at one meterin
the y-dimensionis likely anindicationof the influenceof
lessthana full frame of databeing collectedat this dis-
tance.lt maybe possibleto reducethis influenceby using
a weightedregressionschemeratherthan the straightfor
ward linear regressioncurrently usedto combinethe esti-
matesfrom differentscanlines.

Looking at the plot of biasesthe only disturbingtrendis
in thez component.The algorithmtendsto underestimate
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Figure4. Positionerrorof ScanLine Extentalgorithm

the distanceto the sphere,and this trend increaseswith
increasedlistance. Furtherinvestigationof the algorithm
may reveal the causeof this bias, and supply a remedy
However, even without a deeperunderstandingf the be-
havior, we expect much of this bias can be removed by
making an adjustmentbasedon the z estimate. This ad-
justmentwould grow with z, effectively counteringmuch
of thebiasinherentin thealgorithm.

In additionto a positionestimatethe ScanLine Extental-
gorithmreturnsanestimateof the velocity of the sphereas
well. We have no specifiedrequirementdo meeton this
estimate However, if it is desirecthatthetime of the posi-
tion estimatewve supplybeotherthanthatof themostaccu-
ratetime choserby the algorithm,suchan estimatecanbe
madeusingthe velocity estimate This mayresultin anin-
creasén noiseandperhapsn bias. To give anideaof how

significantthis may be, figure 5 plots the noise and bias
on thevelocity estimateof the ScanLine Extentalgorithm
collectedfrom 200trials ateachdistance.

Table4 shaws the minimumandmaximumCPU timesre-
quiredacros=200trialsfor the ScanLine ExtentAlgorithm

at eachof six distancesNoticethatthereis comparatiely
little differencebetweerthe minimumandmaximumtimes
reportedat ary given distance. Unlike the SphereFitting

Algorithm, this algorithmis not iterative. Approximately
thesamenumberof computationss donefor eachrunata
givendistance Thereis someexpectedvariationdueto dif-

ferencedn the numberof datapointscollectedat varying
distancesanddifferencesn thenumberof scanlines.

If we multiply the worst casetime in this table (0.0107)
by 16 to accountfor thedifferencein processingpeede-
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1 0.0063 0.0070

2 0.0062 0.0077

5 0.0075 0.0096

10 0.0085 0.0107

15 0.0086 0.0095

20 0.0084 0.0093

Table 4. CPUtimesfor singletrials of Sphere-itting
Algorithm

tweenthe 200 MHz machineon which thesetimingswere
performed,andthetarget 12.5MHz machine we seethat
theresultingtime (0.1712seconds)s still comfortablyun-
derthe0.5secondimit setby ourrequirements.

The ScanLine Extentalgorithmturnsoutto be bothfaster
andmoreaccurateghanthe Sphereritting algorithm.

6. CONCLUSIONS

For this study we have developedtwo algorithmsto in-

terpretrangeimagesof a moving sphereproducedby a
scanninglaserrangefinder Thoughboth algorithmsare
successfuto somedegree, we have found that the Scan
Line Extent algorithm is both fasterand more accurate
than the SphereFitting algorithm. In addition, we have

demonstratedhat, under a numberof assumptiongis-

cussedherein,the ScanLine Extentalgorithmis capable
of meetingboth the noiseand CPU time requirementof

the RSRmission.
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APPENDIX

1. DETAILED DESCRIPTION OF THE SCAN LINE
EXTENT ALGORITHM

A scanline consistsof the measurementsf the positions
of asetof m pointsin aline acrosghefaceof the sphere.
Eachpoint i consistsof a measuremenof azimuth(¢;),
elevation (¢;), andrange(r;) to thepoint.

For eachpoint,we alsohavethetime (¢;) atwhichthemea-
surementvastaken. Althoughthe spherds in motiondur-

ing the scan,we assumehat the movementof the sphere
during the scanningof a singleline is insignificantcom-

paredto the othersourcesof error. Consequentlywe treat
all the positionsin the scanline asif they werecollectedat

thesamemomentin time.

The scanningnethodologyusedassuresisthatthe config-
uration of pointsis very nearly linear and approximately
parallel with the x-axis. However, to improve the align-
mentwith thex-axis,we applyarotationaroundthe z-axis.
As shown in figure6, to find therotationangle, we fit are-
gressiorline to the original scanline pointsto predictthe
elevationcomponenbf eachpointe; from theazimuthe;.
The slopeof theregressionline § is the rotationanglewe
useto dothealignment.Theinterceptof theregressiorine
¢ is themeanazimuthof the scanline after therotationis
applied.

The equationdor rotatingthe original point («;, €;, ;) to
producea point (&, €;,7;) in the new spacefollow. Note
thattherangemeasurement; is notchangedy thistrans-
formation.
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&; = a; €088 — €;sin @ (12)
€ = a; sinf@ + ¢; cos 8 (13)
7;,' =T (14)

A secondrotationis appliedto the spaceto align the scan
line with the x-axis. The rotationmovesthe scanline so
thatit is parallelto the x-axis, and so thatits centeris on
the z-axis. The centerof the scanline is definedasthe
mid-point betweenthe two ends. Onceagain,the range
is not changedy this transformation.Figure 7 shows the
positionof thespherdn thefinal transformedspace.

di=a; - dmto (15)
2

€ =€ —¢ (16)

P = 17)

The azimuthand elevation component®f a measurement
aremuchmore accuratehanis the range. Therefore,we
concentrat®n usingtheseangulameasurementaseffec-
tively aspossible.Note thatwe have alreadyusedthe av-
erageof the two end pointsto run the y-axis throughthe
centerof the sphere.This produceghe trivial estimateof
theazimuthof thecenterof thesphered in thetransformed
spacegivenin equationl18. This estimateturnsoutto be



very accurate.To getan estimaten the original spacethe
two transformationsvill eventuallybeinverted.

A=0 (18)

Next, we leveragethe anglemeasurements producean

accurateestimateof the rangeto the centerof the sphere.
The angularextent in azimuth A, as calculatedin equa-
tion 19 of the scanline could be usedto establishthe dis-

tanceto the sphereif only we knew the scanline lengthl

e.g.in centimetersUnfortunatelywe do notknow [. Note
that ! is the radiusof the circle definedby the scanline

slicing throughthe sphere.We do know the radiusof the
sphereu sincethis is a constant8 cm. However, the scan
line doesnot run throughthe centerof the sphere,so its

lengthwill besomevhatlessthanthis.

(19)

Instead,we make a rough estimatesy of the distanceto
the centerof the scanline slice circle. Fromthis, we can
malke a first estimateof the unknown scanline lengthlg
asin equation21. The estimateof sy thatwe useis the
maximumrangeof thetwo extremescanline points.

(20)

so = max(Fy, F'm)

l() = Sp tan % (21)

This estimateof [ is robustto errorsin sg. At adistance
of 1 meteranerrorof 5 cmin sg resultsin anerrorof only

2mmin ly. Theestimates evenmorerobustasthesphere
movesfartheraway.

Now, it is possibleto produceanimproved estimates; of
thedistanceto the centerof the scanline slicecircle based
on sy, lp, andtherange; andazimuthé; measurementsf
all thescanline points. This methodmaybegeneralizedo
produceanimproved sy andly from s;_; andl;_; using
theequationdelow. (Seefigure8 for adefinitionof terms.)
However, we have foundthats; providesanadequatesti-
matewithout furtheriteration.

lp = sp—1tan 5 (22)
dz' = Tz COS Oéz (23)
;= i:i sin di (24)
Zik = l% - SL'% (25)
1 m
sk = Z [d; + 2] (26)
=1

Notethats;, is notanestimationof therangeto the center
of thesphereR, but anestimateof therangeto thecenterof

thecircle definedby theintersectiorof the scanline plane
with the sphere.If we knew the elevation of the centerof

the sphereF, we could calculatethe rangecomponenbf

the centerof the spherel? usingthefollowing equation.

R=spcosE 27)

We estimateE usingthe following setof equations.See
alsofigure9.

y=ty\/u2 13 (28)
B = +arctan 2 (29)

Sk

Oneproblemwith this setof equationss thatit is notclear
whetherthe centerof thespherds above or below thescan
line. In otherwords, the signof y andof E is ambiguous.
If we arelimited to the information availablein a single
scanline, it is notpossibleto distinguishbetweerthesewo
cases.

We solwe this problemby looking at the lengthsof all the
scanlinesin a frame. Generally the elevation of longest
scanline will be closeto that of the centerof the sphere.
Scanlineswith larger elevationsareabove the spherecen-
ter, sothe signsin equation28 and29 arenegative. Con-
versely scanline with smaller elevations are belov the
spherecenter sothesignsarepositive.

In orderto returnour centerpositionestimateto the orig-
inal space we mustreversethe rotationsof equationsl2
throughl17. Thisis doneusingthefollowing equations.

A= iy Qm —%;lpha1 (30)

E=E+¢ (31)

A = Acos(—6) — Esin(—6) (32)
E = Asin(—0) + E cos(—0) (33)

The methoddescribedabove producesfor eachof n scan
lines j, an independentestimateof the position of the
spherecenter To distinguishbetweenthe position esti-
matesreturnedfrom different scanlines, we add a sub-
script,so(4;, E;, R;) refersto thecentempositionestimate

producedfrom thejth scanline. Thetime stampfor this
positionestimatemeasuremeril; is taken asthe meanof
thetimesfor thetwo endpointsof thescanline.



Figure 8. Theconfigurationasviewedfrom top

Figure 9. Theconfigurationasviewedfrom side



tj1 + tjm,
Tj:% (34)

We combinethis set of timed independenposition esti-
matesusinglinearregression.First, we corvertthe spher
ical coordinatedo Cartesiarcoordinatesisingthe follow-
ing equations.

X; = Rjsin A; cos E; (35)
Y; = R;sin E; (36)
Z; = RjcosAjcos E; (37)

Next, for eachof the threespatialdimensionswe perform
standardinear regression. In this discussionwe usethe
X-dimensionas an example. Equationsfor theY and Z
dimensionsaareanalogous.

Linearregressiorfindsthevelocity X andstartingposition
Xo whichreducethe sumof squarecerrorsfor the follow-
ing linear predictionof the position of eachX; from the
correspondingime T}.

X; = XT; + X (38)

Thefollowing equationgefinethe bestfitting line.

X = n Ej:l )ijTj ; Zj:lan 23'2:1 Y; (39)
n Zj:l T; - (Ej:l T))

_ Z?:l X; - X Z;L:I T;
n

Xo (40)

The output of the three linear regressionsis an esti-
mateof the startingposition (X, Yy, Zo) andthe velocity
(X,Y, Z) of the spherecenter From this we can predict
the position of the sphereat ary pointin time. However,
themostaccuratgredictionwill beattheaveragescanline
timeT =+ 37, Tj.
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